
XII. The Presence of Spinal Subluxation, Any Axial Pain, or Radicular 
Pain are Indications for Radiographic Evaluation 

 
Introduction 
   In Section II of this document, 27 indications for spine radiography in children and 
adults were listed. Some of these indications were: 
 

1. Somatic pain 
2. Headache 
3. Radicular pain 
4. Pain during motion of the spinal or extremity joints. 

 
Subluxation Defined 

In a previous section (V), the six types of Structural Spinal Subluxation were delineated. 
These 6 types of subluxation are mechanical descriptions for the allowable spinal displacements. 

 
1. Segmental subluxations,  
2. Postural main motion and coupled motion:, 
3. Snap-through buckling in the sagittal plane,  
4. Euler buckling in AP/PA view,  
5. Scoliosis,  
6. Static or dynamic segmental instability.  

 
Subluxation can be simply thought of as an alteration of the normal joint structural alignment 

and/or function, since altered position causes altered motion.85  Vertebral subluxation, of course, 
is specific to any of the five regions of the axial skeleton (cervical, thoracic, lumbar, sacral, and 
pelvis).  Extraspinal subluxation denotes the articulations of the extremities, including the foot, 
ankle, knee, hip, shoulder, elbow, wrist, hand, anterior ribs, and head (TMJ).  Joint structure is 
defined as the alignment of two or more articulations of the musculoskeletal system.  Joint 
function is defined as the kinesiological motion patterns comprising study of kinematics and 
kinetics to investigate joint motion and integrity.  With these definitions in mind, radiological 
indications for the assessment of spinal subluxation will be discussed herein. 

 
Nerve Supply to the Disc 

Until the 1980s, it was conventional thought that the spinal discs and ligaments were not 
innervated. Since that time, numerous papers have been published establishing the nerve supply 
to the intervertebral disks, ALL, PLL, facet capsular ligaments, ligamentum flavum, 
intertranverse ligaments, interspinous ligaments, and the supraspinous ligaments.9,14,15,23,63,91,95,96 

It is now known that the outer 1/3 of the intervertebral disc is innervated by the sinuvertebral 
nerve, which unions with branches from the Grey ramus communicantes (Figure 1). The upper 
dorsal root ganglion sensory fibers innervate the dorsal portion of the discs via the paravertebral 
sympathetic trunks, while the sinuvertebral nerves, from the lower dorsal root ganglions, 
innervate the same dorsal region of the disc.14 The sinuvertebral nerve is a recurrent branch from 
the ventral ramus of the spinal nerve and it anastomoses with sinuvertebral nerves of adjacent 
segments. Nerve ingrowth along zones of granulation has been shown to extend into the nucleus 
pulposis of degenerated discs.88
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Nerve Supply to the Spinal Ligaments 
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Mechanisms of Pain 

In this present Section XII, the rationale
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Figure 1. Nerve Supply to the Intervertebral 
Disc. The sinuvertebral nerve and branches 
from the grey ramus communicantes innervate 
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the framework to begin our discussion.  Recent advances in immunohistochemistry techniques 
have allowed for histological visualization of mechanoreceptors and nociceptive afferents in the 
soft tissues of the spine.  The presence of these afferent receptors and fibers is the starting point 
for action potential generation and intuitively are responsible for the symptomatic complaints 
that patients present with and the musculoskeletal structure and functional changes that 
accompany pain syndromes.  Neurophysiologic studies have furthered the understanding of the 
relationships between electrical, chemical, and mechanical stimulation of the respective afferent 
units.  

 
Receptor & Fiber Classifications 

Based on the work of Polacek, Freeman and Wyke38 published their afferent terminal 
classification system in 1967 which is currently the most commonly used.114  Wyke 
characterized articular receptors from facet capsules into four categories determined by the 
individual morphological and behavioral characteristics of the receptor or ending (Table 1).  

Because of confusion in the literature regarding differences in classification systems 
among receptors and nerve fibers,101 it is further necessary to expand upon the nerve fiber 
classifications to formulate a basis for further discussion.  There are two classification systems 
for peripheral nerve fibers.  The Erlanger-Gasser classification system uses capital letters (A, B, 
and C) to categorize both afferent and efferent fibers.  Another system, the Lloyd-Hunt 
classification system uses Roman numerals (I-IV) as its designation.  While this system was 
originally designed to classify muscle afferents only,19 enhancement in recording techniques 
have made it possible for sensory physiologists to subgroup nerve fibers, and thus it is used 
today.  

Such mechanoreceptors through their respective afferents initiate sensory signals 
following stress and strain applied to the ligament during spine loading or motion that arrive at 
the spinal cord’s dorsal horn.  These receptors have different sensitivities to loading depending 
on their composition and position. Each receptor/channel once stimulated above threshold opens 
allows Na+ to enter and the resulting depolarization can result in the generation of action 
potentials.  The intensity of the stimulus can be encoded by the frequency of action potentials. 

Afferent input from the periphery arrives in the dorsal horn of the spinal cord.  
Specifically, nociceptive afferent transmission enters the central nervous system at lamina II, 
while mechanoreceptive afferent transmission arrives at lamina VII.  Acting upon substantia 
gelatinosa neurons through interneuronal connections nociception transcends contralaterally 
cephalad through the spinothalamic and spinoreticular tracts to respectively arrive at the 
thalamus and reticular formation where signals are processed and may ultimately transcend to 
the cortex depending upon its regulation for interpretation of pain.  Mechanoreception, in 
contrast, transcends ipsilaterally cephalad via the dorsal columns to the cerebellum and other 
higher centers for proprioception.  Simultaneously, via local reflex responses signaling the 
anterior primary motor neurons in the anterior horn of the spinal cord, neuromuscular reflexes 
are generated.  Further, through interneuronal connections acting upon the intermediolateral cell 
column, pre-ganglionic sympathetic efferent stimulation is generated, more commonly referred 
to as somato-visceral reflexes. 
 
Neuroanatomical Identification Spinal Somatic Afferents 
 Animal Studies 
In reviewing more recent neuroanatomical studies in animals, encapsulated mechanoreceptive 
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endings (Types I-III receptors), and non-encapsulated free nerve endings (Type IV receptors) 
have been found to be present within the soft tissues of the lumbar, thoracic, and cervical spine 
(including the intervertebral disc, zygapophyseal joint, anterior and posterior longitudinal 
ligaments, ligamentum flavum, interspinous and supraspinous ligament, and the deep 
musculature surrounding the posterior elements).24,25,55,56,74,77,115,117 which causes reflexogenic 
contraction of the paraspinal muscles to protect and possibly prevent ligamentous damage while 
at the same time maintaining stability through local reflexes.104 Similarly, afferent input acting 
through spinal pathways contributes to proprioception and suprasegmental motor control.113 
Type IV afferent fibers (nociceptors) signal noxious stimulus through mechanical deformation, 
or by chemical depolarization and transmit information regarding tissue damage to higher centers 
where pain may be qualified and other physiological responses occur.89  
 

Human Studies 
Recently, investigators have identified the presence of mechanoreceptors, nociceptors 

and their respective afferent fibers (units) in human spinal tissues, including the ligaments, facet 
joints, and intervertebral discs.34,39,54,56,69,70,91,106,108  In a histological analysis of normal human 
thoracic and lumbar facet capsules, McLain and Pickar,69 reported the presence of Types I-IV 
receptors and noted their presence to be a smaller proportion in comparison to that previously 
reported in the cervical spine.  It is the connection of these receptors to respective afferent nerve 
fibers that provides the innervation of the lumbar spine.  The dual nerve supply of the 
intervertebral disc via the sinuvertebral nerve and gray rami communicantes, and the branches of 
the dorsal rami are responsible for providing innervation of the soft tissues of the lumbar spine.14 
 
The Effects of Inflammation on Afferent Sensitivity 
 The effect of inflammation on the mechanosensitivity and discharge rates of afferent 
units has also been investigated by some of the above referenced researchers.  Substance P and 
other neurotransmitters such as Calcitonin Gene Related Peptide (CGRP) that are released during 
nociceptive stimulation cause peripheral sensitization of the nociceptive fibers making them 
more susceptible to mechanical and chemical stimulation.118  In other work, Cavanaugh et al.22 
injected carrageenan and kaolin, commonly used products that result in acute tissue 
inflammation with the release of histamine, bradykinin, and prostaglandins, into the extracellular 
tissue.  They discovered in the presence of inflammation, elevated baseline discharge rates and 
there occurred vigorous multi-unit response to stretch by moving the facet joint approximately 1 
mm in inferior-superior, anterior-posterior, and lateral-medial directions.  This research, and 
other studies83,84 demonstrates that peripheral nerve endings become sensitized by chemical 
mediators released as part of the inflammatory cascade in the face of tissue damage.  
Consequently, inflamed joints have been found to have an ongoing background nerve discharge 
that can cause constant pain at rest and sensitized nerve endings can cause increased pain during 
ordinary movements.  Thus, afferents in the adjacent tissues that normally fire only when 
mechanical stress is clearly noxious, will fire at much lower stresses in the presence of 
inflammation, and can maintain a background discharge even without mechanical stress.23 
 Another clinical implication resulting from these studies demonstrates that inflammation 
resulting from damage to spinal structures associated with degeneration or capsule, ligament, 
disc, or muscle sprains or strains could cause prolonged nociceptor excitation.  This may 
contribute to a vicious cycle including muscle spasm and secondary hyperalgesia, that leads to 
persistent pain and perpetuated spinal joint dysfunction.23 
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Table 1. 
Classification of articular receptors. (Modified from: Wyke BD.  Articular Neurology and 

Manipulative Therapy. In: Idezak RM, ed. Aspects of Manipulative Therapy. Carlton Lincoln Institute of 
Health Science, 1980; and McLain RF. Mechanoreceptor Endings in Human Cervical Facet Joints. Spine 

1994; 19:495-501.) 
 
Type Morphological 

Appearance 
Average 

Dimensions 
Location Functional 

Characteristics 
Other 

Terminology 
I Thinly 

encapsulated 
globular 
corpuscles 
usually found in 
clusters. 

400-100µm 
long 

Fibrous capsules of 
joints, and in 
periarticular 
ligaments and 
tendons; usually  in 
the superficial layers 

Static & Dynamic 
Mechanoreceptors, 
low threshold, 
slowly adapting 
afferent ending. 

Ruffini’s ending, 
Golgi-Mazzoni 
ending, Meissner’s 
corpuscle, basket or 
spray-type ending. 

II Thickly 
encapsulated 
conical or 
cynlindrical 
corpuscles 

250-300µm 
long & 
100µm wide 

Fibrous capsules of 
joints in the deeper 
subsynovial layers, 
and at junctions of 
fibrous tissue and fat; 
often accompanied 
by vascular leash; 
oriented along with 
the connective tissue 
fibers  

Dynamic 
Mechanoreceptors, 
low threshold, 
rapidly adapting 
afferent ending. 

Pacinian corpuscle, 
Vater-Pacinian 
corpuscle; modified 
Pacinian corpuscle; 
Paciniform 
corpuscle; 
Meissner’s 
corpuscle; Golgi-
Mazzoni body; 
bulbous corpuscle; 
club-like ending 

III Thinly 
encapsulated 
fusiform 
corpuscles 

Up to 600µm 
long; 100µm 
long 

Applied to surfaces 
of joint ligaments and 
tendons (Collateral & 
intrinsic), as well as 
in dense fibrous 
connective tissues  

Dynamic 
mechanoreceptors, 
high threshold, 
very slowly 
adapting afferent 
ending 

Golgi’s ending, 
Golgi tendon organ, 
Golgi-Mazzoni 
corpuscle 

IV (a)Traditional 
plexuses of 
unmyelinated 
nerve fibers 
 
(b) Free 
unencapsulated, 
unmyelinated 
nerve endings 

0.5-1.5 µm in 
diameter 

(a) Fibrous capsules 
of joints. Adventitial 
sheaths of articular 
blood vessels 
 
(b) Joint ligaments 
(Collateral and 
Intrinsic) 

Nociceptive 
mechanoreceptors; 
very high 
threshold, non-
adapting afferent 
ending 
chemosensitive (to 
abnormal tissue 
metabolites); 
nociceptive 
receptors 

Nociceptor, free 
nerve ending 

 
 
 
Surgical Studies and Nerve Block Studies on Spinal Tissues 
 Other areas of investigation have clinically identified the viscoelastic elements of somatic 
musculoskeletal soft tissues as being pain generators.  In the spine, the medial branch of the 
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dorsal primary rami has been identified as the innervating structure to the facet joints.16-18,31,96  
Pain provocation studies and subsequent anesthesia including medial branch blocks have 
identified the facet joints to be significant pain generators involved in musculoskeletal 
pain.9,10,15,36,95-100 Provocation discography has also provided insight into the prevalence of 
discogenic pain and the underlying annular lesions structurally associated with this clinical spinal 
pain syndrome.13,20,68,71,78,79,93,94,109 These studies and others have identified the spinal joints as 
being a significant source of somatic (referred or scleratogenous) musculoskeletal pain,63 while 
the spinal nerve roots through compression or chemical radiculitis, have been identified as the 
major source of radicular pain.12,21,27,37,58-61,87,102,111

 
Posture 

To further explore the necessity of radiographic examination to determine clinically 
relevant articular alignment, a discussion of posture is necessary.  Human posture may be 
defined as the position or carriage of the body as a whole having genetic, habitual, and injury 
influences.  Posture literature has often held that the relationship of the line of gravity to the body 
has a functional significance to the musculoskeletal system since rotational (bending) moments  
are created if the line of gravity and the centers of weight-bearing joints do not coincide.90 While 
some have considered the relationship between posture and musculoskeletal pain controversial, 
the majority of studies have found a positive correlation between abnormal posture/altered joint 
alignment and musculoskeletal pain (see Section X for a complete review of each region).30,52,107  
Abnormal posture increases load on pain sensitive discoligamentous tissues causing extraneous 
efforts to be endured by the muscular stabilizing system of the spine.29 Increased muscular 
activity of the trunk muscles has been associated with back pain.8,26,49  Posture also has an effect 
on resultant spinal function including coupling patterns.28,85 and range of motion.32  Postural 
changes and sustained loading on the spinal joints have further been found to increase stress 
concentrations in the intervertebral discs,3;4;6 and posterior elements of the spine.5  Increased 
loading and spine injury have been found to be a precursor to spinal degeneration.2,43 This 
concept of abnormal posture, has led to a number of investigations to define normal 
posture.44,46,48,53

Biomechanical principles (applying mechanics to a living organism) can be applied in the 
assessment of posture.  A basic theorem in physics and engineering holds that the movement of 
any object can be decomposed into a rotation, translation, and deformation.  Rotation can be 
defined as a circular movement in degrees, translation as a linear or straight-line movement, and 
deformation as a change in size or shape of an object. By the 1970s, researchers were using this 
fundamental engineering principle to describe the motion of spinal segments as rotations and 
translations in 6 degrees of freedom (DoF). The possible movements of a spinal segment are 
illustrated in Figure 2.  These movements can be qualitatively classified as rotations (R) on each 
axis denoted with the listings of Rx, Ry, and Rz and translations (T) along each axis, listed as Tx, 
Ty, or Tz.112  
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Figure 2.  Degrees of freedom of a typical 
lumbar vertebra. A vertebra can rotate (Rx, 
Ry, Rz) around the three axes of a 3-
dimensional Cartesian coordinate system. It 
can also translate (Tx, Ty, Tz) along these 
axes. This provides 6 degrees of freedom. 
(Reprinted with permission from Harrison DE 
et al. Three-dimensional spinal coupling 
mechanics: Part I. A review of the literature. J 
Manipulative Physiol Ther 1998; 21(2): 101-
113) 
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decipher without noting a straightening or hyper-lordosis of lumbar spine on a lateral radiograph.  
Extremity joint positions and anomalies can also be responsible for errors in postural analysis. 
 
Biomechanical Studies of Loading 
 The correlation of visual postural analysis with radiographic images assists the clinician 
in identifying etiological and causative factors responsible for the patients presenting complaints; 
a necessary step in chiropractic differential diagnosis. Indeed, abnormal loads from abnormal 
posture has been found to be associated with soft tissue remodeling (Davis’ Law), and hard 
tissue (bony) remodeling (Wolff’s Law). For example, a number of studies have determined 
correlations between increased intervertebral disc loading and subsequent degeneration.6,47,51,62,65  
Other studies have determined degenerative spinal changes in response to anular injury.7,80-82,103 
Still other work has idenfied the progression of degeneration to osteophytes limiting mobility 
and function of musculoskeletal articulations.64,66,75,76,86,105  Figure 3 summarizes the 
biomechanical relationships between spinal subluxations and clinically relevant pain syndromes. 
   
  
Figure 3. Spinal Subluxations (over time) Cause Pathologies and Pain 
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knowledge is gained.  Does the patient have pain or paresthesia in a dermatomal distribution 
suggesting possible nerve root involvement?  Conversely, does the patient have local or referred 
(scleratogenous) type pain possibly arising from somatic structures such as the disc, facet, 
ligament, muscle, or viscera?  While a standard neurological examination may help to confirm 
the presence of nerve root involvement, the same examination is poor in discriminating patients 
with somatic pain.  Even more complex are the uncertainties regarding psychosocial factors and 
patient motivations to consider when evaluating the pain patient.  Within this context, this 
section will conclude with the necessity for radiographic evaluation in the musculoskeletal pain 
patient. 

In recent years, there have been significant advances in the understanding of the 
physiologic and biochemical processes that are involved in pain processing at a spinal level. The 
elucidation of these multifaceted processes has meant a shift away from the conceptualization of 
pain as a simple “hard-wired” system with a pure “stimulus-response” relationship.   In fact, 
many patients report pain in the absence of tissue damage or any likely pathophysiological cause, 
which may be due to psychosocial factors,1 or be related to plastic changes within the nervous 
system.33  The International Association for the Study of Pain defines pain as an unpleasant 
sensory and emotional experience associated with actual or potential tissue damage or described 
in terms of such damage.1  Naturally, pain is subjective, and highly individualistic. Theorists 
view pain as not simply a sensation, but as a multidimensional phenomenon involving sensory, 
evaluative, emotional, and response components.72  Each person learns the meaning of the word, 
pain, through experiences related to injury in early life,1 and personal, social, and cultural 
influences all are thought to play important roles in the pain phenomenon.  Because pain, 
particularly persistent pain, is not often directly tied to specific pathophysiology, but rather is 
linked to integrated perceptions arising from neurochemical and biomechanical input, cognition, 
and emotion, the mind greatly influences the intensity of the pain.73  Moreover, there is a poor 
association between objective measures of physical pathology and the amount of pain and 
disability that a patient may express.42 These factors must be taken into consideration in the 
realm of patient management. 

Clinical decision-making is based upon securing a working diagnosis from a review of 
the patient history, physical examination, standard tests, and imaging studies.  At the center of 
this mix, lays the patient and their complaints.  Patient evaluations are not as simple as looking at 
test results. Comorbid factors such as patient motivation can further influence patient responses 
on a number of levels, from questionnaire responses to actual test performance.  Patients have 
been known to amplify symptoms or functional status for a variety of reasons based in the human 
nature. Anxiety, stress, and emotional disturbances such as depression or hysteria may be 
responsible for elevated pain scores.67 In addition, the effects of compensation, litigation, and 
employment have been named as influences in patient status and outcome.35,92  It is clear that 
comorbid factors exist in patient status and recovery, thus, attentiveness in assessment of the big 
picture is important for clinicians to consider. 

Recent models of spinal pain have been proposed to assist clinicians and researchers in 
developing useful evaluation and management protocols.  Waddell110 conceptualized the back 
pain problem as possessing three distinct elements: 
 
Pain: an unpleasant sensory and emotional experience associated with actual or potential tissue 
damage, or described in terms of such damage; 
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Disability: diminished capacity for everyday activities and gainful employment; and 
 
Impairment: an anatomical or physiological abnormality leading to loss of normal bodily ability. 
While the three elements may be related, it is noteworthy that the strength of the relationship is 
not perfect and disassociation of the elements can occur. 
  

Another model of disablement has been adapted to the physiotherapy management of low 
back pain.11  This model is slightly different to Waddell’s as it makes the distinction between a 
functional limitation and a disability. 

 
Functional Limitations: restrictions in performance at the level of the individual (i.e., the ability 
to perform a task of daily living); 
 
Disability: restrictions in the ability to perform socially defined roles and tasks expected of an 
individual (i.e., inability to work or participate in family social functions). 
 

The distinction between functional limitations and disability helps explain why two 
patients with similar impairments and functional limitations may have very different levels of 
disability.11  In common, however, is the fact that clinicians must make decisions based on 
interpretation of a multitude of test results. 

Four kinds of measurements provide relevant information about patient clinical status 
and/or response to treatment.  In general, they are:  

1. Perceptual measurements (i.e. reports of pain severity and pain tolerance),  
2. Structural measurements (i.e. anomalies, pathology, spinal subluxation, and abnormal 

posture),  
3. Functional measurements (i.e. range of motion, strength, stiffness, activities of daily 

living), and  
4. Physiologic measurements (i.e. neurologic assessment, laboratory examinations) (Figure 

2).   
 
The most prevalent complaint among patients presenting to a chiropractic office is 

musculoskeletal pain.50 Thus, issues relevant to pain and patient motivations are noteworthy to 
understand the meaningfulness of spine instrument measures.  Research aimed at assessing the 
quality and effectiveness of health care as measured by the attainment of a specified end result, 
or outcome is known as outcomes assessment.  Such measures include parameters such as 
improved health, lowered morbidity or mortality, and improvement of abnormal states 
(perceptual, structural, functional, and/or physiological). Thus, radiographic analysis of possible 
structural spinal subluxations can be considered of paramount importance in the overall 
assessment of a presenting patient’s condition. 
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